Forum Review

Nrf2: A Potential Molecular Target for Cancer Chemoprevention by Natural Compounds

WOO-SIK JEONG¹, MIRA JUN,² and AH-NG TONY KONG³

ABSTRACT

One of the most prominent strategies of cancer chemoprevention might be protecting cells or tissues against various carcinogens and carcinogenic metabolites derived from exogenous or endogenous sources. This protection could be achieved through the induction of phase 2 detoxifying enzymes and antioxidant enzymes such as glutathione S-transferase, NAD(P)H quinone oxidoreductase 1, and heme oxygenase-1, a process that is mediated mainly by the antioxidant response elements (ARE) within the promoter regions of these genes. Nuclear factor-erythroid 2-related factor 2 (Nrf2), a member of the Cap 'n' collar (CNC) family of basic regionleucine zipper transcription factors, plays a key role in ARE-mediated gene expression. Under normal condition, Nrf2 is sequestered in the cytoplasm by an actin-binding protein, Kelch-like ECH associating protein 1 (Keap1), and upon exposure of cells to inducers such as oxidative stress and certain chemopreventive agents, Nrf2 dissociates from Keap1, translocates to the nucleus, binds to AREs, and transactivates phase 2 detoxifying and antioxidant genes. Several upstream signaling pathways including mitogen-activated protein kinases, protein kinase C, phosphatidylinositol 3-kinase, and transmembrane kinase are implicated in the regulation of Nrf2/ARE activity. Furthermore, many natural chemopreventive agents are known to induce Nrf2/AREdependent gene expression, also in part by regulating the turnover of the Nrf2 protein itself. This review discusses our current understanding of the Nrf2/ARE pathway as a potential molecular target for cancer chemoprevention, as well as the feasibility of screening natural compounds for activation of this pathway and as potential cancer preventive agents for human use. Antioxid. Redox Signal. 8: 99–106.

INTRODUCTION

ANCER IS A MAJOR public health problem in developed countries and causes one in four deaths in the United States (21). Although significant progress has been made in understanding the molecular mechanisms of carcinogenesis in recent years, research on effective strategies to prevent or inhibit the carcinogenic process lag behind. Carcinogenesis is a multiple-step process, typically classified into three stages including initiation, promotion, and progression (41). These carcinogenic processes can be intervened by various natural

and synthetic chemicals, so-called chemopreventive agents. Chemoprevention has been defined as a cancer-preventive approach that utilizes natural or synthetic pharmacological agents to impede, arrest, or reverse carcinogenesis at its early stages (50). Phytochemicals from foods and edible plants have gained much attention as potential chemopreventive agents due to their relatively low toxicity, low cost, and easy availability, as well as their general implications as health foods (23). One of the most prominent strategies of cancer chemoprevention, therefore, might be the use of dietary chemopreventive agents for protecting cells and tissues against various carcinogens and

¹Food Science Institute, School of Food & Life Science, College of Biomedical Science & Engineering, Inje University, South Korea.

²Bioanalytical/Preclinical Department, Celgene Corporation, Warren, New Jersey.

³Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.

carcinogenic metabolites that could be derived from exogenous or endogenous sources. This may be achievable through the induction of phase 2 detoxifying and antioxidant enzymes such as glutathione *S*-transferase (GST), NAD(P)H quinone oxidoreductase 1 (NQO1), and heme oxygenase-1 (HO-1), a process mediated at least in part by the antioxidant response element (ARE) in the promoter region of these genes (32).

Nuclear factor-erythroid 2-related factor 2 (Nrf2), a member of the Cap 'n' collar (CNC) family of basic region-leucine zipper (bZIP) proteins, plays a key role in ARE-dependent gene expression and, therefore, has been of great interest as a potential molecular target for cancer prevention. Many natural antioxidants and potential chemopreventive agents including isothiocyanates, diallyl sulfides, indoles, terpenes, and phenolic compounds such as tea catechins and curcuminoids, increase Nrf2 protein levels by inhibiting its turnover and induce ARE-mediated gene expression (2, 4, 21, 28, 41, 56, 62, 63). This review discusses our current understanding of the Nrf2/ARE pathway as a potential molecular target for cancer chemoprevention and the feasibility of utilizing natural compounds that activate this pathway as potential cancer preventive agents for human use.

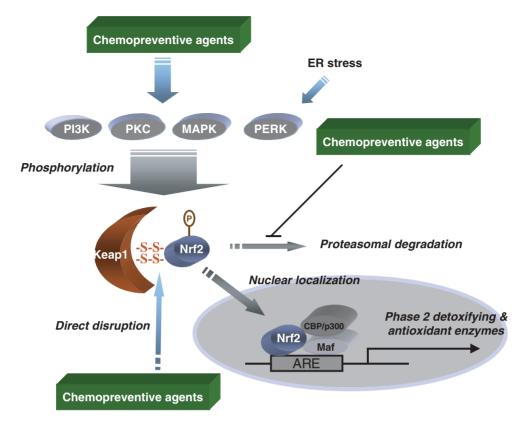
ROLE OF PHASE 2 DETOXIFYING AND ANTIOXIDANT ENZYMES AND Nrf2 IN CHEMOPREVENTION

Wattenberg originally introduced the classification of chemopreventive agents into two major categories, blocking agents and suppressing agents, based on their potential targeting of the carcinogenesis stages (59). Blocking agents inhibit early mutagenic events—those caused by endogenous or exogenous carcinogens in the initiation stage of carcinogenesis—by inducing detoxification of carcinogens or thwarting their metabolic activation. On the other hand, suppressing agents interfere with the stages of promotion and progression whereby the mutated cells transform into malignant tumor cells. In order to prevent cancer development, protecting cells from initiation of the carcinogenesis process would be a logical strategy.

Induction of phase 2 detoxifying and antioxidant enzymes has been suggested as an effective and sufficient blocking strategy to protect cells tissues from the toxic and neoplastic effects of many carcinogens (52). Besides GST, NQO1, and HO-1, this group of enzymes include aldehyde reductase (AR), glutathione reductase (GR), epoxide hydrolase (EH), UDP-glucuronosyltransferase (UGT), and γ -glutamylcysteine synthetase (γ -GCS) (4). These enzymes protect cells against toxic reactive species (and potential carcinogens) through a variety of reactions including 1) conversion to less reactive and toxic materials by conjugation with endogenous substrates such as glutathione, glucuronide, or sulfate, leading to an increase in their solubility and excretion; and 2) augmentation of cellular antioxidant capacity by generation of endogenous antioxidant molecules such as GSH and bilirubin (52).

Induction of these antioxidant enzymes is mediated primarily by the antioxidant or electrophile response elements (ARE/EpRE), which are found in the 5'-flanking region of many of the phase 2 and antioxidant genes (1, 13, 47). Nrf2 is known

to play a key role in ARE-mediated gene expression. Increased levels of Nrf2 are reported to up-regulate gene expression induced by various natural antioxidants and chemopreventive agents such as isothiocyanates, diallyl sulfides, indoles, terpenes, and phenolic compounds such as tea catechins and curcuminoids (2, 4, 31, 38, 56, 62).


The critical role of Nrf2 in the expression of phase 2 and antioxidant genes has been further confirmed from studies with *nrf2*-disrupted mice. Compared to wild-type mice, *nrf2*-disrupted mice exhibit reduced levels of antioxidant enzymes and are more susceptible to carcinogens (12, 17, 46). Nrf2, therefore, has become a key molecular target in the field of chemoprevention.

REGULATION OF Nrf2/ARE SIGNALING PATHWAYS

Extensive studies in recent years have provided more insights into the regulatory mechanisms involved in Nrf2/ARE signaling pathways. These include direct regulation of Nrf2, protein abundance, as well as indirect or upstream signal transduction pathways leading to activation of the Nrf2/ARE pathway (Fig. 1). The cytoskeletal actin-binding protein Keap1 (Kelch-like ECH-associated protein 1; also referred to as INrf2, inhibitor of Nrf2) has been recently identified as a key regulator of Nrf2 activity (10, 18). Keap1 is responsible for cytoplasmic-nuclear shuttling and proteasomal degradation of Nrf2 (19, 39, 63). In the absence of Keap1, Nrf2 constitutively accumulates in the nucleus and stimulates transcription of cytoprotective genes. Furthermore, the phenotypic deficiencies observed in keap1-/- mice is reversed in Keap1/Nrf2 compound mutants, suggesting that Keap1 acts as an upstream regulator of Nrf2 in response to oxidative and xenobiotic stress (58).

Keap1 is a cysteine-rich protein and some of the 27 cysteine residues in Keap1 are postulated to play a sensory role in detecting oxidants and xenobiotics (43). In addition, certain cysteine residues (C257, C273, C288, and C297) reportedly interact with the N-terminal Neh2 domain of Nrf2 (29). Phase 2 enzyme inducers such as sulforaphane disrupt the cytoplasmic Keap1•Nrf2 complex through thiol modification of cysteine residues in Keap1, thereby releasing Nrf2 and permitting its translocation to the nucleus where it transcriptionally activates ARE-dependent genes (11). Mutations of both C273 and C288 abolish the repressive effect of Keap1 on Nrf2, suggesting a critical role of these two cysteine residues in the repression of Nrf2 (57).

Another important role of Keap1 in the Nrf2/ARE signaling pathway is its regulatory properties on the degradation of Nrf2. Under normal conditions, the half-life of Nrf2 in mammalian cells is about 15 to 45 min, depending on cell type, and this turnover is mediated primarily by the ubiquitin-26S proteasome pathway (22, 44, 51). Upon treatment with certain chemopreventive agents such as sulforaphane and electrophiles or oxidizing agents such as diethylmaleate (DEM) and cadmium, the degradation of Nrf2 appears to be delayed and thereby its stability increases(22, 39, 51). Recent studies indicate that Keap1 is a Cul3-based E3 ligase adaptor protein that target Nrf2 for ubiquitination and proteosome-dependent degra-

FIG. 1. Signaling pathways leading to the induction of phase 2 detoxifying and antioxidant enzymes through activation of the Nrf2/ARE.

dation (8, 63). Keap1, therefore, negatively regulates Nrf2 by both preventing its nuclear accumulation and enhancing its rate of proteasomal degradation (39). The increased stability and activation of Nrf2 by certain stimuli seem to come from their ability to repress the Keap1-dependent degradation mechanism. Interestingly, recent results from our laboratory have shown that potential chemopreventive agents such as allyl isothiocyanate, indole-3-carbinol (13C), and parthenolide increase the Nrf2 protein level without affecting the rate of degradation, whereas sulforaphane enhances the level of Nrf2 as well as its stability, suggesting that increasing stability of Nrf2 by inhibition of Keap1 might not be the only mechanism for the activation of Nrf2 (22).

Many studies have also indicated that Nrf2 is also activated by phosphorylation. Mitogen-activated protein kinases (MAPKs), protein kinase C (PKC), phosphatidylinositol 3-kinase (PI3K), and RNA-dependant protein kinase-like endoplasmic reticulum kinase (PERK) have been implicated in this process. Activation of extracellular signal-regulated protein kinase 2 (ERK2), a MAPK, by sulforaphane or *tert*-butyl-hydroquinone (tBHQ) enhances the induction of ARE-dependent phase 2 detoxifying genes in human and murine hepatoma cells, a process that may involve the direct activation of Raf-1 by these inducers (62). Treatment of HepG2 cells with pyrrolidine dithiocarbamate resulted in the transcriptional up-regulation of the γ -glutamylcysteine synthetase (γ -GCS) subunit genes through ERK- and p38-dependent phosphorylation events (64). Recently, our laboratory has demonstrated up-regulation of the

Nrf2 transactivation domain by ERK and JNK pathways through the coactivator CBP (48).

PKC-directed phosphorylation of Nrf2 and ARE-mediated gene expression is also reported to be a critical event for the nuclear translocation of Nrf2 in response to oxidative stress such as tBHQ and β -naphthoflavone (15). PKC directly phosphorylates Nrf2 at Ser40 after tBHQ treatment and this modification decreases the affinity of Nrf2 for Keap1 allowing translocation of Nrf2 to the nucleus (3, 16). Of the many PKC isomers, atypical PKC has been suggested to phosphorylate Nrf2 at Ser40 (45).

PI3K is another kinase proposed to regulate the Nrf2/ARE pathway. Treatment of IMR-32 human neuroblastoma cells with tBHQ stimulated NQO1-ARE (hNQO1-ARE) activity and NQO1 protein expression in a PI3K-dependent manner as these inductions were abolished by co-treatment with LY 294002, a PI3K specific inhibitor (35). ARE-mediated rGSTA2 induction in the rat hepatoma H4IIE cells by tBHQ is also dependent on PI3K signaling (25). The exact mechanism underlying the induction of the Nrf2/ARE by PI3K, however, is not fully understood.

PERK, a transmembrane protein kinase, has been shown to phosphorylate Nrf2, resulting in its dissociation from Keap1; such phosphorylation also inhibits the reassociation of Nrf2/Keap1 complexes *in vitro* (9). Additional studies by the same investigators have demonstrated that the activation of Nrf2 through PERK contributes to the maintenance of glutathione levels, which functions as a buffer against the accumulation

of reactive oxygen species during the unfolded protein response caused by endoplasmic reticulum stress (7).

CHEMOPREVENTIVE AGENTS INVOLVED IN THE Nrf2/ARE PATHWAY

Isothiocyanates such as sulforaphane, phenethyl isothiocyanate (PEITC), and allyl isothiocyanate (AITC) are present in cruciferous vegetables including broccoli, watercress, Brussels sprouts, cabbage, and cauliflower, and have been extensively studied for their chemopreventive properties. Isothiocyanates are produced from their precursor, glucosinolates, by physical processes such as chewing or chopping as well as by the human intestinal microflora after ingestion (26). The chemopreventive properties of cruciferous vegetables have been addressed in several epidemiological studies as well as in animal models of chemically-induced carcinogenesis (53). Sulforaphane is one of the most extensively studied isothiocyanates; it is known to stimulate the induction of MAPKs, Nrf2, ARE reporter gene activity, and phase 2 detoxifying and antioxidant enzymes such as NQO1 and HO-1 (22, 28, 62, 63). An oligonucleotide microarray study has revealed that sulforaphane induces a number of Nrf2-regulated genes such as NQO1, GST, GCS, UGT, epoxide hydrolase, NADPH regenerating enzymes, various xenobiotic metabolizing enzymes, antioxidant enzymes, and biosynthetic enzymes of the glutathione and glucuronidation conjugation pathways (54). Sulforaphane has been proposed to disrupt the cytoplasmic complex between Keap1 and Nrf2 by reacting with covalent bonds between the Nrf2-Keap1 complex, thereby resulting in the release of Nrf2 to the nucleus and the activation of ARE-dependent phase 2 genes (11). Recent studies have indicated that sulforaphane stabilizes Nrf2 protein probably through its inhibition of Keap1-dependent proteasomal degradation, although other mechanisms are also possible (22, 63). A sulforaphane analog, 6-methylsulfinylhexyl isothiocyanate, also activates the Nrf2-ARE-dependent detoxification pathway in vitro and in vivo (42).

PEITC is another promising chemopreventive isothiocyanate compound. It has been shown to dose-dependently activate ARE-reporter gene activity in HepG2 hepatoma cells (27). Increased ARE-reporter gene activity was observed when the cells were transiently transfected with expression plasmids encoding wild-type Nrf2 or JNK1, while co-transfection of Nrf2 and JNK1 showed additional enhancement of reporter activity. In addition, overexpression of dominant-negative JNK1 suppressed Nrf2-induced ARE reporter gene expression in a dose-dependent manner, implying that JNK1 might be an upstream activator of Nrf2. AITC has also been found to stimulate ARE-reporter gene activity as well as protein expression of Nrf2 and HO-1 (22). However, the degradation of Nrf2 was not delayed by AITC treatment, suggestive of a Keap1-independent mechanism of Nrf2 regulation by this compound.

Diallyl sulfides such as diallyl sulfide (DAS), diallyl disulfide (DADS), and diallyl trisulfide (DATS) are another class of potential chemopreventive agents that are found in the Allium family including garlic, onion, and chive. DADS and DATS induce GST, glutathione reductase, NQO1, and ferritin

in cultured cells and in animals (49, 55, 61). A recent study from our laboratory has also indicated the positive roles of these diallyl sulfides on the activity of ARE-mediated gene expression and expression of Nrf2, NQO1, and HO-1 proteins (4). Structure-activity relationship studies have suggested that the third sulfur in the structure of the diallyl sulfides contributed substantially to their bioactivities and that allyl-containing sulfides were more potent than propyl-containing sulfides. MAPKs such as ERK, JNK, and p38 were activated by DATS treatment although the inhibition of these MAPKs did not affect DATS-induced ARE activity. Other investigators have reported that DAS induces HO-1 through the production of ROS, and that Nrf2 and MAPK (ERK and p38) mediate the induction (14). The exact role of MAPK (ERK1/2, JNK1/2/3, ERK5, or p38s) on Nrf2/ARE-mediated gene expression probably depends on cell types, the nature of chemical inducers or inhibitors, and their respective concentrations.

Besides the sulfur-containing agents mentioned above, phenolic compounds are another major category of promising chemopreventive agents targeting the Nrf2/ARE pathway. Tea catechins such as (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), and (-)-epigallocatechin gallate (EGCG) are very strong antioxidant flavonoids, and their health modulating properties, including their potential beneficial roles in heart disease and cancer, are well documented (24, 34). Among tea catechins, EGCG has been shown to potently induce ARE-mediated gene expression and activate all three MAPKs (5). In addition, it stimulates caspase-3 activity and thereby induces apoptosis.

Curcumin and caffeic acid phenethyl ester (CAPE) are also potential natural chemopreventive agents found in tumeric and propolis of honeybee hives, respectively. CAPE stimulates ARE-mediated NQO1 expression (20). Curcumin and CAPE stimulate the expression of Nrf2 in a dose- and time-dependent manner in renal epithelial cells, presumably by promoting inactivation of the Nrf2-Keap1 complex; this response was associated with a significant increase in the expression and activity of HO-1 protein (2). The authors suggested an involvement of p38 MAPK in curcumin-mediated HO-1 induction.

Other natural chemopreventive agents that may induce phase 2 detoxifying enzymes through the Nrf2/ARE pathway include indoles such as indole-3-carbinol (I3C) and terpenoids. I3C has been reported to retard the progression of aflatoxin B1-induced carcinogenesis in animal at both the initiation and promotion stages. Treatment with I3C has shown significant induction of GST Yc2, aflatoxin B1 aldehyde reductase, and quinone reductase (37, 40). In HepG2 cells, I3C showed a weak induction of ARE-reporter gene activity and Nrf2 protein expression but had no effect on HO-1 protein expression (22). NQO and GST enzyme activities in the small intestine of mice were increased about two-fold after the mice were fed with a mixture of coffee diterpenes, cafestol, and kahweol palmitate (38). A sesquiterpene found in feverfew, parthenolide, stimulates ARE-reporter gene activity and potently induce expression of Nrf2 and HO-1 proteins in HepG2 cells (22).

Overall, it appears that many naturally occurring cancer chemopreventive compounds can modulate the Nrf2-Keap1 complex in the cytoplasm of cells of different organs or tissues. Their *in vivo* potency probably depends on the cellular levels of antioxidants such as reduced glutathione (GSH) (28),

and their reactivity towards sulfhydryl groups (SH) of cysteine residues or other redox-sensitive amino acids in proteins such as Keap1 or various kinases and phosphatases (6). Disruption of the Keap1/Nrf2 complex would lead to Nrf2 release, its translocation to the nucleus, and subsequent transcriptional activation of ARE-responsive genes. As a consequence, these compounds would function as cytoprotective agents against oxidative stress and carcinogenic reactive intermediates, possibly hindering the development of cancer as well as cardiovascular, inflammatory, and neurological diseases. There are, however, at least two caveats with respect to using some of these naturally occurring agents indiscriminately. The first consideration will be the absolute bioavailability, the amount of the pharmacologically active components being absorbed from the gastrointestinal tract after oral administration that will reach the target organs/sites and impart the potential beneficial effects of the compounds on that organ (30, 34). The second aspect will be the potential toxicity of these compounds (32, 33). It appears that above certain threshold concentrations of these compounds, other cellular molecules, activities or events such as AP-1, NF-κB, the cell cycle, mitochondria damage, and caspases will be modulated leading to cytotoxicity. If the cytotoxicity occurs selectively in the preneoplastic or neoplastic cells, then this would be of great benefit in cancer prevention. However, if this occurs in normal tissue, then this would certainly be detrimental. It appears that, in general, precancerous or cancerous cells harbor dysregulated survival signal transduction activities (36, 60). It is tempting to speculate that these cells may be more prone or more sensitive to perturbation of these signal transduction events by the chemopreventive compounds and therefore they are more prone/sensitive to apoptotic cell death then their normal counterpart. To test this hypothesis, more in vivo studies will be needed in the future. Therefore, in general, the in vivo therapeutic window and the risk to benefit ratio would need to be considered when we are examining the potential usage of these agents for human health including cancer prevention, cardiovascular, inflammation and neurological diseases.

CONCLUDING REMARKS

Accumulating evidence supports the premise that the Nrf2/ ARE pathway plays a key role in the protective mechanism of cells, through the induction of phase 2 detoxifying and antioxidant enzymes, against exogenous and endogenous carcinogenic species. Several classes of potential natural chemopreventive agents as described in this article have been extensively studied and many other compounds are under investigation for their regulation of this protective mechanism. Given the great structural diversity amongst the chemopreventive agents targeting the Nrf2/ARE signaling pathway and the complexity of the upstream cellular signaling events, however, much more effort is needed to elucidate the complex regulation of the Nrf2/ARE signal transduction pathway by diverse classes of natural chemopreventive agents. In addition, most in vitro experiments using natural compounds have been carried out with much higher concentrations than could be achievable in vivo. Therefore, more calibrated in vivo approaches should be

considered when these results are to be applied to human studies. Nevertheless, given their relatively low toxicity, low cost, and abundance, further analysis of the diverse natural compounds for chemopreventive activity is clearly warranted. In the final analysis, even if such studies do not lead to successful development of some of these compounds as anticancer agents, the increased understanding of their mechanism of action will certainly add value to our knowledge since these dietary compounds are consumed daily in our diets throughout the world.

ACKNOWLEDGMENT

Supported in part by grant R01-CA094828 from the National Institutes of Health (NIH).

ABBREVIATIONS

AITC, allyl isothiocyanate; ARE, antioxidant response element; bZIP, basic region-leucine zipper; CAPE, caffeic acid phenethyl ester; CNC, Cap 'n' collar; DADS, diallyl disulfide; DAS, diallyl sulfide; DATS, diallyl trisulfide; EC, (-)-epicatechin; ECG, (-)-epicatechin gallate; EGC, (-)-epigallocatechin; EGCG, (-)-epigallocatechin gallate; EpRE, electrophile responsive element; ERK, extracellular signal-regulated protein kinase; γGCS, γ-glutamylcysteine synthetase; GSH, reduced glutathione; GST, glutathione S-transferase; HO-1, heme oxygenase-1; I3C, indole-3-carbinol; JNK, c-Jun N-terminal kinase; Keap1, Kelch-like ECH associating protein 1; MAPKs, mitogen-activated protein kinases; NQO1, NAD(P)H:quinone oxidoreductase 1; Nrf2, nuclear factor-erythroid 2-related factor 2; PEITC, phenethyl isothiocyanate; PERK, RNA-dependent protein kinase-like endoplasmic reticulum kinase; PI3K, phosphatidylinositol 3-kinase; PKC, protein kinase C; tBHQ, tert-butyl-hydroquinone; UGT, UDP-glucuronosyltransferase.

REFERENCES

- Alam J, Wicks C, Stewart D, Gong P, Touchard C, Otterbein S, Choi AM, Burow ME, and Tou J. Mechanisms of heme oxygenase-1 gene activation by cadmium in MCF-7 mammary epithelial cells. Role of p38 kinase and Nrf2 transcription factor. *J Biol Chem* 275: 27694–27702, 2000.
- Balogun E, Hoque M, Gong P, Killeen E, Green CJ, Foresti R, Alam J, and Motterlini R. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. *Biochem J* 371: 887–895, 2003.
- 3. Bloom DA, and Jaiswal AK. Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression. *J Biol Chem* 278: 44675–44682, 2003.
- 4. Chen C, Pung D, Leong V, Hebbar V, Shen G, Nair S, Li W, and Tony Kong AN. Induction of detoxifying enzymes by

garlic organosulfur compounds through transcription factor Nrf2: effect of chemical structure and stress signals. *Free Radic Biol Med* 37: 1578–1590, 2004.

- Chen C, Yu R, Owuor ED, and Kong AN. Activation of antioxidant-response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death.
 Arch Pharm Res 23: 605–612, 2000.
- Chen YR, Han J, Kori R, Kong AN, and Tan TH. Phenylethyl isothiocyanate induces apoptotic signaling via suppressing phosphatase activity against c-Jun N-terminal kinase. *J Biol Chem* 277: 39334–39342, 2002.
- Cullinan SB, and Diehl JA. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. *J Biol Chem* 279: 20108–20117, 2004.
- Cullinan SB, Gordan JD, Jin J, Harper JW, and Diehl JA. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a cul3-based E3 ligase: oxidative stress sensing by a cul3-Keap1 ligase. *Mol Cell Biol* 24: 8477–8486, 2004.
- Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, and Diehl JA. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. *Mol Cell Biol* 23: 7198–7209, 2003.
- 10. Dhakshinamoorthy S, and Jaiswal AK. Functional characterization and role of INrf2 in antioxidant response element-mediated expression and antioxidant induction of NAD(P)H:quinone oxidoreductase 1 gene. *Oncogene* 20: 3906–3917, 2001.
- Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, Yamamoto M, and Talalay P. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. *Proc Natl Acad Sci USA* 99: 11908–11913, 2002.
- 12. Fahey JW, Haristoy X, Dolan PM, Kensler TW, Scholtus I, Stephenson KK, Talalay P, and Lozniewski A. Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of *Helicobacter pylori* and prevents benzo[a]pyreneinduced stomach tumors. *Proc Natl Acad Sci USA* 99: 7610–7615, 2002.
- 13. Favreau LV, and Pickett CB. Transcriptional regulation of the rat NAD(P)H:quinone reductase gene. Identification of regulatory elements controlling basal level expression and inducible expression by planar aromatic compounds and phenolic antioxidants. *J Biol Chem* 266: 4556–4561, 1991.
- Gong P, Hu B, and Cederbaum AI. Diallyl sulfide induces heme oxygenase-1 through MAPK pathway. *Arch Biochem Biophys* 342: 252–260, 2004.
- Huang HC, Nguyen T, and Pickett CB. Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2. *Proc Natl Acad Sci USA* 97: 12475–12480, 2000.
- Huang HC, Nguyen T, and Pickett CB. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. *J Biol Chem* 277: 42769–42774, 2002.
- Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, and Nabeshima Y. An Nrf2/small Maf heterodimer medi-

- ates the induction of phase II detoxifying enzyme genes through antioxidant response elements. *Biochem Biophys Res Commun* 236: 313–322, 1997.
- 18. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, and Yamamoto M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. *Genes Dev* 13: 76–86, 1999.
- Itoh K, Wakabayashi N, Katoh Y, Ishii T, O'Connor T, and Yamamoto M. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. *Genes Cells* 8: 379–391, 2003.
- Jaiswal AK, Venugopal R, Mucha J, Carothers AM, and Grunberger D. Caffeic acid phenethyl ester stimulates human antioxidant response element-mediated expression of the NAD(P)H:quinone oxidoreductase (NQO1) gene. Cancer Res 57: 440–446, 1997.
- Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, Feuer EJ, and Thun MJ. Cancer statistics. 2005. CA Cancer J Clin 55: 10–30, 2005.
- 22. Jeong WS, Keum YS, Chen C, Jain MR, Shen G, Kim JH, Li W, and Kong AN. Differential expression and stability of endogenous nuclear factor E2-related factor 2 (Nrf2) by natural chemopreventive compounds in HepG2 human hepatoma cells. *J Biochem Mol Biol* 38: 167–176, 2005.
- 23. Jeong WS, Kim IW, Hu R, and Kong AN. Modulatory properties of various natural chemopreventive agents on the activation of NF-kappaB signaling pathway. *Pharm Res* 21: 661–670, 2004.
- 24. Jeong WS, and Kong AN. Biological properties of monomeric and polymeric catechins: green tea catechins and procyanidins. *Pharm Biol* 42: 84–93, 2004.
- Kang KW, Cho MK, Lee CH, and Kim SG. Activation of phosphatidylinositol 3-kinase and Akt by tert-butylhydroquinone is responsible for antioxidant response elementmediated rGSTA2 induction in H4IIE cells. *Mol Pharma*col 59: 1147–1156, 2001.
- 26. Keum YS, Jeong WS, and Kong AN. Chemoprevention by isothiocyanates and their underlying molecular signaling mechanisms. *Mutat Res* 555: 191–202, 2004.
- Keum YS, Owuor ED, Kim BR, Hu R, and Kong AN. Involvement of Nrf2 and JNK1 in the activation of antioxidant responsive element (ARE) by chemopreventive agent phenethyl isothiocyanate (PEITC). *Pharm Res* 20: 1351–1356, 2003.
- 28. Kim BR, Hu R, Keum YS, Hebbar V, Shen G, Nair SS, and Kong AN. Effects of glutathione on antioxidant response element-mediated gene expression and apoptosis elicited by sulforaphane. *Cancer Res* 63: 7520–7525, 2003.
- 29. Kobayashi M, Itoh K, Suzuki T, Osanai H, Nishikawa K, Katoh Y, Takagi Y, and Yamamoto M. Identification of the interactive interface and phylogenic conservation of the Nrf2-Keap1 system. *Genes Cells* 7: 807–820, 2002.
- Kong AN. Signal transduction in cancer chemoprevention. *Mutat Res* 555: 1–2, 2004.
- 31. Kong AN, Owuor E, Yu R, Hebbar V, Chen C, Hu R, and Mandlekar S. Induction of xenobiotic enzymes by the MAP kinase pathway and the antioxidant or electrophile response element (ARE/EpRE). *Drug Metab Rev* 33: 255–271, 2001.

- 32. Kong AN, Yu R, Hebbar V, Chen C, Owuor E, Hu R, Ee R, and Mandlekar S. Signal transduction events elicited by cancer prevention compounds. *Mutat Res* 480–481: 231–241, 2001.
- 33. Kong AN, Yu R, Lei W, Mandlekar S, Tan TH, and Ucker DS. Differential activation of MAPK and ICE/Ced-3 protease in chemical-induced apoptosis. The role of oxidative stress in the regulation of mitogen-activated protein kinases (MAPKs) leading to gene expression and survival or activation of caspases leading to apoptosis. *Restor Neurol Neurosci* 12: 63–70, 1998.
- Lambert JD, and Yang CS. Cancer chemopreventive activity and bioavailability of tea and tea polyphenols. *Mutat Res* 523–524: 201–208, 2003.
- 35. Lee JM, Hanson JM, Chu WA, and Johnson JA. Phosphatidylinositol 3-kinase, not extracellular signal-related kinase, regulates activation of the antioxidant-responsive element in IMR-32 human neuroblastoma cells. *J Biol Chem* 276: 20011–20016, 2001.
- Manson MM. Cancer prevention—the potential for diet to modulated molecular signaling. *Trends Mol Med* 9: 11–18, 2003.
- Manson MM, Hudson EA, Ball HW, Barrett MC, Clark HL, Judah DJ, Verschoyle RD, and Neal GE. Chemoprevention of aflatoxin B1-induced carcinogenesis by indole-3-carbinol in rat liver—predicting the outcome using early biomarkers. *Carcinogenesis* 19: 1829–1836, 1998.
- 38. McMahon M, Itoh K, Yamamoto M, Chanas SA, Henderson CJ, McLellan LI, Wolf CR, Cavin C, and Hayes JD. The Cap'n'Collar basic leucine zipper transcription factor Nrf2 (NF-E2 p45-related factor 2) controls both constitutive and inducible expression of intestinal detoxification and glutathione biosynthetic enzymes. *Cancer Res* 61: 3299–3307, 2001.
- McMahon M, Itoh K, Yamamoto M, and Hayes JD. Keap1dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. *J Biol Chem* 278: 21592–21600, 2003.
- Mehta RG, Liu J, Constantinou A, Thomas CF, Hawthorne M, You M, Gerhuser C, Pezzuto JM, Moon RC, and Moriarty RM. Cancer chemopreventive activity of brassinin, a phytoalexin from cabbage. *Carcinogenesis* 16: 399–404, 1995.
- Moolgavkar SH. The multistage theory of carcinogenesis and the age distribution of cancer in man. *J Natl Cancer Inst* 61: 49–52, 1978.
- 42. Morimitsu Y, Nakagawa Y, Hayashi K, Fujii H, Kumagai T, Nakamura Y, Osawa T, Horio F, Itoh K, Iida K, Yamamoto M, and Uchida K. A sulforaphane analogue that potently activates the Nrf2-dependent detoxification pathway. *J Biol Chem* 277: 3456–3463, 2002.
- Motohashi H, and Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. *Trends Mol Med* 10: 549–557, 2004.
- 44. Nguyen T, Sherratt PJ, Huang HC, Yang CS, and Pickett CB. Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome. *J Biol Chem* 278: 4536–4541, 2003.
- 45. Numazawa S, Ishikawa M, Yoshida A, Tanaka S, and Yoshida T. Atypical protein kinase C mediates activation of

- NF-E2-related factor 2 in response to oxidative stress. *Am J Physiol Cell Physiol* 285: C334–C342, 2003.
- 46. Ramos-Gomez M, Kwak MK, Dolan PM, Itoh K, Yamamoto M, Talalay P, and Kensler TW. Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. *Proc Natl Acad Sci USA* 98: 3410–3415, 2001.
- 47. Rushmore TH, Morton MR, and Pickett CB. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. *J Biol Chem* 266: 11632–11639, 1991.
- 48. Shen G, Hebbar V, Nair S, Xu C, Li W, Lin W, Keum YS, Han J, Gallo MA, and Kong AN. Regulation of Nrf2 transactivation domain activity: the differential effect of mitogen-activated protein kinase cascades and synergistic stimulatory effect of Raf and CREB-binding protein. *J Biol Chem* 279: 23052–23060, 2004.
- Singh SV, Pan SS, Srivastava SK, Xia H, Hu X, Zaren HA, and Orchard JL. Differential induction of NAD(P)H:quinone oxidoreductase by anticarcinogenic organosulfides from garlic. *Biochem Biophys Res Commun* 244: 917–920, 1998.
- 50. Sporn MB. Carcinogenesis and cancer: different perspective on the same disease. *Cancer Res* 51: 6215–6218, 1991.
- Stewart D, Killeen E, Naquin R, Alam S, and Alam J. Degradation of transcription factor Nrf2 via the ubiquitinproteasome pathway and stabilization by cadmium. *J Biol Chem* 278: 2396–2402, 2003.
- Talalay P. Chemoprotection against cancer by induction of phase 2 enzymes. *Biofactors* 12: 5–11, 2000.
- Talalay P, and Fahey JW. Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. *J Nutr* 131: 3027S–3033S, 2001.
- Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, and Biswal S. Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. *Cancer Res* 62: 5196–5204, 2002.
- Thomas M, Zhang P, Noordine ML, Vaugelade P, Chaumontet C, and Duee PH. Diallyl disulfide increases rat h-ferritin, L-ferritin and transferrin receptor genes in vitro in hepatic cells and in vivo in liver. *J Nutr* 132: 3638–3641, 2002.
- Venugopal R, and Jaiswal AK. Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regular the human antioxidant response element-mediated expression of NAD(P)H: quinone oxidoreductase1 gene. *Proc Natl Acad Sci USA* 93: 14960–14965, 1996.
- 57. Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, Kang MI, Kobayashi A, Yamamoto M, Kensler TW, and Talalay P. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. *Proc Natl Acad Sci USA* 101: 2040–2045, 2004.
- 58. Wakabayashi N, Itoh K, Wakabayashi J, Motohashi H, Noda S, Takahashi S, Imakado S, Kotsuji T, Otsuka F, Roop DR, Harada T, Engel JS, and Yamamoto M. Keap1null mutation leads to postnatal lethality due to constitutive Nrf2 activation. *Nat Genet* 35: 238–245, 2003.
- Wattenberg LW. Chemoprevention of cancer. Cancer Res 45: 1–8, 1985.

 Weinstein IB. Disorders in cell circuitry during multistage carcinogenesis. The role of homeostasis. *Carcinogenesis* 21: 857–864, 2000.

- 61. Wu CC, Sheen LY, Chen HW, Tsai SJ, and Lii CK. Effects of organosulfur compounds from garlic oil on the antioxidation system in rat liver and red blood cells. *Food Chem Toxicol* 39: 563–569, 2001.
- 62. Yu R, Lei W, Mandlekar S, Weber MJ, Der CJ, Wu J, and Kong AT. Role of a mitogen-activated protein kinase pathway in the induction of phase II detoxifying enzymes by chemicals. *J Biol Chem* 274: 27545–27552, 1999.
- 63. Zhang DD, and Hannink M. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. *Mol Cell Biol* 23: 8137–8151, 2003.

64. Zipper LM, and Mulcahy RT. Inhibition of ERK and p38 MAP kinases inhibits binding of Nrf2 and induction of GCS genes. *Biochem Biophys Res Commun* 278: 484–492, 2000.

Address reprint requests to:
 Dr. Ah-Ng Tony Kong
 Department of Pharmaceutics
 Ernest-Mario School of Pharmacy
Rutgers, The State University of New Jersey
160 Frelinghuysen Road
Piscataway, NJ 08854

E-mail: Kong T@rci.rutgers.edu

Received for publication June 7, 2005; accepted July 8, 2005.

This article has been cited by:

- 1. Mohammad A. Aminzadeh, Tadashi Sato, Nosratola D. Vaziri. 2012. Participation of endoplasmic reticulum stress in the pathogenesis of spontaneous glomerulosclerosis–Role of intra-renal angiotensin system. *Translational Research* **160**:4, 309-318. [CrossRef]
- 2. Jong Hun Lee, Tin Oo Khor, Limin Shu, Zheng-Yuan Su, Francisco Fuentes, Ah-Ng Tony Kong. 2012. Dietary Phytochemicals and Cancer Prevention: Nrf2 Signaling, Epigenetics, and Cell Death Mechanisms in Blocking Cancer Initiation and Progression. *Pharmacology & Therapeutics*. [CrossRef]
- 3. Dona Sinha, Jaydip Biswas, Anupam Bishayee. 2012. Nrf2-mediated redox signaling in arsenic carcinogenesis: a review. *Archives of Toxicology*. [CrossRef]
- 4. Hye Soo Kim, Sun Young Park, Eun Kyoung Kim, Eun Yeon Ryu, Young Hun Kim, Geuntae Park, Sang Joon Lee. 2012. Acanthopanax senticosus has a heme oxygenase-1 signaling-dependent effect on Porphyromonas gingivalis lipopolysaccharide-stimulated macrophages. *Journal of Ethnopharmacology* **142**:3, 819-828. [CrossRef]
- Alberto Valdés, Carolina Simó, Clara Ibáñez, Lourdes Rocamora-Reverte, José Antonio Ferragut, Virginia García-Cañas, Alejandro Cifuentes. 2012. Effect of dietary polyphenols on K562 leukemia cells: A Foodomics approach. ELECTROPHORESIS 33:15, 2314-2327. [CrossRef]
- 6. Yasuhiko Izumi, Atsuko Matsumura, Seiko Wakita, Ken-ichi Akagi, Hiroyuki Fukuda, Toshiaki Kume, Kazuhiro Irie, Yuki Takada-Takatori, Hachiro Sugimoto, Tadashi Hashimoto, Akinori Akaike. 2012. Isolation, identification, and biological evaluation of Nrf2-ARE activator from the leaves of green perilla (Perilla frutescens var. crispa f. viridis). *Free Radical Biology and Medicine* **53**:4, 669-679. [CrossRef]
- 7. Donatella Fedeli, Maura Montani, Manuel Carloni, Cinzia Nasuti, Augusto Amici, Rosita Gabbianelli. 2012. Leukocyte Nurr1 as peripheral biomarker of early-life environmental exposure to permethrin insecticide. *Biomarkers* 1-6. [CrossRef]
- 8. Clara Ibáñez, Alberto Valdés, Virginia García-Cañas, Carolina Simó, Mustafa Celebier, Lourdes Rocamora-Reverte, Ángeles Gómez-Martínez, Miguel Herrero, María Castro-Puyana, Antonio Segura-Carretero, Elena Ibáñez, José A. Ferragut, Alejandro Cifuentes. 2012. Global Foodomics strategy to investigate the health benefits of dietary constituents. *Journal of Chromatography A* 1248, 139-153. [CrossRef]
- 9. Sadagopan Magesh, Yu Chen, Longqin Hu. 2012. Small Molecule Modulators of Keap1-Nrf2-ARE Pathway as Potential Preventive and Therapeutic Agents. *Medicinal Research Reviews* **32**:4, 687-726. [CrossRef]
- 10. Rajendra Sharma, Abha Sharma, Pankaj Chaudhary, Mukesh Sahu, Shailesh Jaiswal, Sanjay Awasthi, Yogesh C. Awasthi. 2012. Role of 4-hydroxynonenal in chemopreventive activities of sulforaphane. *Free Radical Biology and Medicine* **52**:11-12, 2177-2185. [CrossRef]
- 11. Hongyi Qi, Baowei Chen, X. Chris Le, Jianhui Rong. 2012. Concomitant Induction of Heme Oxygenase-1 Attenuates the Cytotoxicity of Arsenic Species from Lumbricus Extract in Human Liver HepG2 Cells. *Chemistry & Biodiversity* 9:4, 739-754. [CrossRef]
- 12. Jia-Wei Yao, Jing Liu, Xiang-Zhen Kong, Shou-Guo Zhang, Xiao-Hui Wang, Miao Yu, Yi-Qun Zhan, Wei Li, Wang-Xiang Xu, Liu-Jun Tang, Chang-Hui Ge, Lin Wang, Chang-Yan Li, Xiao-Ming Yang. 2012. Induction of activation of the antioxidant response element and stabilization of Nrf2 by 3-(3-pyridylmethylidene)-2-indolinone (PMID) confers protection against oxidative stress-induced cell death. *Toxicology and Applied Pharmacology* **259**:2, 227-235. [CrossRef]
- 13. Hyo Jung Kim, Ji-Sun Lim, Woo-Keun Kim, Jong-Sang Kim. 2011. Soyabean glyceollins: biological effects and relevance to human health. *Proceedings of the Nutrition Society* 1-9. [CrossRef]
- 14. Tin Oo Khor, Ying Huang, Tien-Yuan Wu, Limin Shu, Jonghun Lee, Ah-Ng Tony Kong. 2011. Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. *Biochemical Pharmacology* **82**:9, 1073-1078. [CrossRef]
- 15. Atsushi Otani, Hiroshi Kojima, Congrong Guo, Akio Oishi, Nagahisa Yoshimura. 2011. Low-Dose-Rate, Low-Dose Irradiation Delays Neurodegeneration in a Model of Retinitis Pigmentosa. *The American Journal of Pathology*. [CrossRef]
- 16. Hongyi Qi, Yifan Han, Jianhui Rong. 2011. Potential roles of PI3K/Akt and Nrf2–Keap1 pathways in regulating hormesis of Z-ligustilide in PC12 cells against oxygen and glucose deprivation. *Neuropharmacology*. [CrossRef]
- 17. Bokyung Sung, Sahdeo Prasad, Vivek R. Yadav, Afsaneh Lavasanifar, Bharat B. Aggarwal. 2011. Cancer and diet: How are they related?. *Free Radical Research* **45**:8, 864-879. [CrossRef]

- 18. P. Palsamy, S. Subramanian. 2011. Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2–Keap1 signaling. *Biochimica et Biophysica Acta (BBA) Molecular Basis of Disease* 1812:7, 719-731. [CrossRef]
- 19. David B. Peden. 2011. The role of oxidative stress and innate immunity in O3 and endotoxin-induced human allergic airway disease. *Immunological Reviews* **242**:1, 91-105. [CrossRef]
- 20. Nazir M. Khan, Santosh K. Sandur, Rahul Checker, Deepak Sharma, T.B. Poduval, Krishna B. Sainis. 2011. Pro-oxidants ameliorate radiation-induced apoptosis through activation of the calcium–ERK1/2–Nrf2 pathway. *Free Radical Biology and Medicine* **51**:1, 115-128. [CrossRef]
- 21. Lakhanawan Charoensuk, Porntip Pinlaor, Suksanti Prakobwong, Yusuke Hiraku, Umawadee Laothong, Wipaporn Ruangjirachuporn, Puangrat Yongvanit, Somchai Pinlaor. 2011. Curcumin induces a nuclear factor-erythroid 2-related factor 2-driven response against oxidative and nitrative stress after praziquantel treatment in liver fluke-infected hamsters. *International Journal for Parasitology* **41**:6, 615-626. [CrossRef]
- 22. Hyo Jung Kim, Eric di Luccio, Ah-Ng Tony Kong, Jong-Sang Kim. 2011. Nrf2-mediated induction of phase 2 detoxifying enzymes by glyceollins derived from soybean exposed to Aspergillus sojae. *Biotechnology Journal* 6:5, 525-536. [CrossRef]
- 23. Chao Liang, Zhanggang Xue, Jing Cang, Hao Wang, Ping Li. 2011. Dimethyl sulfoxide induces heme oxygenase-1 expression via JNKs and Nrf2 pathways in human umbilical vein endothelial cells. *Molecular and Cellular Biochemistry*. [CrossRef]
- 24. A. Boutten, D. Goven, E. Artaud-Macari, J. Boczkowski, M. Bonay. 2011. NRF2 targeting: a promising therapeutic strategy in chronic obstructive pulmonary disease. *Trends in Molecular Medicine*. [CrossRef]
- 25. Tien-Yuan Wu, Tin Oo Khor, Constance Lay Lay Saw, Stephanie C. Loh, Alvin I. Chen, Soon Sung Lim, Jung Han Yoon Park, Li Cai, Ah-Ng Tony Kong. 2011. Anti-inflammatory/Anti-oxidative Stress Activities and Differential Regulation of Nrf2-Mediated Genes by Non-Polar Fractions of Tea Chrysanthemum zawadskii and Licorice Glycyrrhiza uralensis. *The AAPS Journal* 13:1, 1-13. [CrossRef]
- 26. Kyung-Yoon Kam, Seong Jin Yu, Nahee Jeong, Jeong Hwa Hong, Angela M. A. Anthony Jalin, Sungja Lee, Yong Won Choi, Chae Kwan Lee, Sung Goo Kang. 2011. p-hydroxybenzyl alcohol prevents brain injury and behavioral impairment by activating Nrf2, PDI, and neurotrophic factor genes in a rat model of brain ischemia. *Molecules and Cells* 31:3, 209-215. [CrossRef]
- 27. L. Jodar, E. M. Mercken, J. Ariza, C. Younts, J. A. Gonzalez-Reyes, F. J. Alcain, I. Buron, R. de Cabo, J. M. Villalba. 2011. Genetic Deletion of Nrf2 Promotes Immortalization and Decreases Life Span of Murine Embryonic Fibroblasts. *The Journals of Gerontology Series A: Biological Sciences and Medical Sciences* 66A:3, 247-256. [CrossRef]
- 28. Valentina Rubio, Jiawei Zhang, Mahara Valverde, Emilio Rojas, Zheng-Zheng Shi. 2011. Essential role of Nrf2 in protection against hydroquinone- and benzoquinone-induced cytotoxicity. *Toxicology in Vitro* **25**:2, 521-529. [CrossRef]
- 29. D. Ren, N. F. Villeneuve, T. Jiang, T. Wu, A. Lau, H. A. Toppin, D. D. Zhang. 2011. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. *Proceedings of the National Academy of Sciences* **108**:4, 1433-1438. [CrossRef]
- 30. M. Fusser, G. J. Nesse, A. Khobta, N. Xia, H. Li, A. Klungland, B. Epe. 2011. Spontaneous mutagenesis in Csbm/mOgg1-/mice is attenuated by dietary resveratrol. *Carcinogenesis* **32**:1, 80-85. [CrossRef]
- 31. Nicole F. Villeneuve, Alexandria Lau, Donna D. Zhang. 2010. Regulation of the Nrf2–Keap1 Antioxidant Response by the Ubiquitin Proteasome System: An Insight into Cullin-Ring Ubiquitin Ligases. *Antioxidants & Redox Signaling* 13:11, 1699-1712. [Abstract] [Full Text HTML] [Full Text PDF] [Full Text PDF] with Links]
- 32. Rong Hu, Constance Lay-Lay Saw, Rong Yu, Ah-Ng Tony Kong. 2010. Regulation of NF-E2-Related Factor 2 Signaling for Cancer Chemoprevention: Antioxidant Coupled with Antiinflammatory. *Antioxidants & Redox Signaling* 13:11, 1679-1698. [Abstract] [Full Text HTML] [Full Text PDF] [Full Text PDF with Links]
- 33. Alessia Comandini, Valeria Marzano, Giacomo Curradi, Giorgio Federici, Andrea Urbani, Cesare Saltini. 2010. Markers of anti-oxidant response in tobacco smoke exposed subjects: A data-mining review. *Pulmonary Pharmacology & Therapeutics* 23:6, 482-492. [CrossRef]
- 34. Kyong-Suk Jin, Min-Ji Bak, Mira Jun, Ho-Jin Lim, Wan-Keun Jo, Woo-Sik Jeong. 2010. #-pinene triggers oxidative stress and related signaling pathways in A549 and HepG2 cells. *Food Science and Biotechnology* **19**:5, 1325-1332. [CrossRef]
- 35. Wolf Bat-Chen, Tal Golan, Irena Peri, Zvi Ludmer, Betty Schwartz. 2010. Allicin Purified From Fresh Garlic Cloves Induces Apoptosis in Colon Cancer Cells Via Nrf2. *Nutrition and Cancer* **62**:7, 947-957. [CrossRef]
- 36. Mi-Kyoung Kwak, Thomas W. Kensler. 2010. Targeting NRF2 signaling for cancer chemoprevention. *Toxicology and Applied Pharmacology* **244**:1, 66-76. [CrossRef]

- 37. Chaekyun Kim, Jin Sun Jang, Mi-Ran Cho, Santosh R. Agarawal, Young-Nam Cha. 2010. Taurine chloramine induces heme oxygenase-1 expression via Nrf2 activation in murine macrophages. *International Immunopharmacology* **10**:4, 440-446. [CrossRef]
- 38. Hongyi Qi, Shiu On Siu, Yan Chen, Yifan Han, Ivan K. Chu, Yao Tong, Allan S.Y. Lau, Jianhui Rong. 2010. Senkyunolides reduce hydrogen peroxide-induced oxidative damage in human liver HepG2 cells via induction of heme oxygenase-1. *Chemico-Biological Interactions* **183**:3, 380-389. [CrossRef]
- 39. Valentina Rubio, Mahara Valverde, Emilio Rojas. 2010. Effects of atmospheric pollutants on the Nrf2 survival pathway. *Environmental Science and Pollution Research* 17:2, 369-382. [CrossRef]
- 40. Zeng-Chun Ma, Qian Hong, Yu-Guang Wang, Hong-Ling Tan, Cheng-Rong Xiao, Qian-De Liang, Bo-Li Zhang, Yue Gao. 2010. Ferulic Acid Protects Human Umbilical Vein Endothelial Cells from Radiation Induced Oxidative Stress by Phosphatidylinositol 3-Kinase and Extracellular Signal-Regulated Kinase Pathways. *Biological & Pharmaceutical Bulletin* 33:1, 29-34. [CrossRef]
- 41. Laurent Marrot, Emilie Planel, Anne-Claire Ginestet, Jean-Philippe Belaïdi, Christophe Jones, Jean-Roch Meunier. 2010. In vitro tools for photobiological testing: molecular responses to simulated solar UV of keratinocytes growing as monolayers or as part of reconstructed skin. *Photochemical & Photobiological Sciences* 9:4, 448. [CrossRef]
- 42. Ronald A. Lubet, Ruisheng Yao, Clinton J. Grubbs, Ming You, Yian Wang. 2009. Induced expression of drug metabolizing enzymes by preventive agents: Role of the antioxidant response element. *Chemico-Biological Interactions* **182**:1, 22-28. [CrossRef]
- 43. Ji Yeon Seo , Jia Park , Hyo Jung Kim , In Ae Lee , Ji-Sun Lim , Soon Sung Lim , Se-Jin Choi , Jung Han Yoon Park , Hui Jung Kang , Jong-Sang Kim . 2009. Isoalantolactone from Inula helenium Caused Nrf2-Mediated Induction of Detoxifying Enzymes. *Journal of Medicinal Food* 12:5, 1038-1045. [Abstract] [Full Text PDF] [Full Text PDF with Links]
- 44. Young-Sam Keum, Tin Oo Khor, Wen Lin, Guoxiang Shen, Ki Han Kwon, Avantika Barve, Wenge Li, Ah-Ng Kong. 2009. Pharmacokinetics and Pharmacodynamics of Broccoli Sprouts on the Suppression of Prostate Cancer in Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) Mice: Implication of Induction of Nrf2, HO-1 and Apoptosis and the Suppression of Akt-dependent Kinase Pathway. *Pharmaceutical Research* 26:10, 2324-2331. [CrossRef]
- 45. Shyamal K. Goswami, Dipak K. Das. 2009. Resveratrol and chemoprevention. Cancer Letters 284:1, 1-6. [CrossRef]
- 46. Adrian T. Churchman, Anila A. Anwar, Francois Y.L. Li, Hideyo Sato, Tetsuro Ishii, Giovanni E. Mann, Richard C.M. Siow. 2009. Transforming growth factor-#1 elicits Nrf2-mediated antioxidant responses in aortic smooth muscle cells. *Journal of Cellular and Molecular Medicine* 13:8b, 2282-2292. [CrossRef]
- 47. Danielle Morse, Ling Lin, Augustine M.K. Choi, Stefan W. Ryter. 2009. Heme oxygenase-1, a critical arbitrator of cell death pathways in lung injury and disease. *Free Radical Biology and Medicine* **47**:1, 1-12. [CrossRef]
- 48. Pil-Hoon Park, Hak Sung Kim, Xing Yu Jin, Feng Jin, Jin Hur, Geonil Ko, Dong Hwan Sohn. 2009. KB-34, a newly synthesized chalcone derivative, inhibits lipopolysaccharide-stimulated nitric oxide production in RAW 264.7 macrophages via heme oxygenase-1 induction and blockade of activator protein-1. *European Journal of Pharmacology* **606**:1-3, 215-224. [CrossRef]
- 49. Ming Zhu, Hyounggee Baek, Ruiwu Liu, Aimin Song, Kit Lam, Derick Lau. 2009. LAS0811: From Combinatorial Chemistry to Activation of Antioxidant Response Element. *Journal of Biomedicine and Biotechnology* **2009**, 1-9. [CrossRef]
- 50. Pil-Hoon Park, Hak Sung Kim, Jin Hur, Xing Yu Jin, Ying Lan Jin, Dong Hwan Sohn. 2009. YL-I-108, a synthetic chalcone derivative, inhibits lipopolysaccharide-stimulated nitric oxide production in RAW 264.7 murine macrophages: Involvement of heme oxygenase-1 induction and blockade of activator protein-1. *Archives of Pharmacal Research* 32:1, 79-89. [CrossRef]
- 51. Hitoshi Ashida, Shin Nishiumi, Itsuko Fukuda. 2008. An update on the dietary ligands of the AhR. *Expert Opinion on Drug Metabolism & Toxicology* **4**:11, 1429-1447. [CrossRef]
- 52. X HAN, J PAN, D REN, Y CHENG, P FAN, H LOU. 2008. Naringenin-7-O-glucoside protects against doxorubicin-induced toxicity in H9c2 cardiomyocytes by induction of endogenous antioxidant enzymes. *Food and Chemical Toxicology* **46**:9, 3140-3146. [CrossRef]
- 53. Dunyaporn Trachootham, Weiqin Lu, Marcia A. Ogasawara, Nilsa Rivera-Del Valle, Peng Huang. 2008. Redox Regulation of Cell Survival. *Antioxidants & Redox Signaling* 10:8, 1343-1374. [Abstract] [Full Text HTML] [Full Text PDF] [Full Text PDF with Links]
- 54. Yu Du, Nicole F. Villeneuve, Xiao-Jun Wang, Zheng Sun, Weimin Chen, Jixue Li, Hongxiang Lou, Pak Kin Wong, Donna D. Zhang. 2008. Oridonin Confers Protection against Arsenic-Induced Toxicity through Activation of the Nrf2-Mediated Defensive Response. *Environmental Health Perspectives* **116**:9, 1154-1161. [CrossRef]

- 55. Jianli Chen, Mahesha Adikari, Rajash Pallai, Hemant K. Parekh, Henry Simpkins. 2008. Dihydrodiol dehydrogenases regulate the generation of reactive oxygen species and the development of cisplatin resistance in human ovarian carcinoma cells. *Cancer Chemotherapy and Pharmacology* **61**:6, 979-987. [CrossRef]
- 56. Timo M. Buetler, Hélia Latado, Alexandra Baumeyer, Thierry Delatour. 2008. Dicarbonyls Stimulate Cellular Protection Systems in Primary Rat Hepatocytes and Show Anti-inflammatory Properties. *Annals of the New York Academy of Sciences* **1126**:1, 113-117. [CrossRef]
- 57. Auemduan Prawan, Young-Sam Keum, Tin Oo Khor, Siwang Yu, Sujit Nair, Wenge Li, Longqin Hu, Ah-Ng Tony Kong. 2008. Structural Influence of Isothiocyanates on the Antioxidant Response Element (ARE)-Mediated Heme Oxygenase-1 (HO-1) Expression. *Pharmaceutical Research* 25:4, 836-844. [CrossRef]
- 58. Helmut Schweikl, Karl-Anton Hiller, Alexander Eckhardt, Carola Bolay, Gianrico Spagnuolo, Thomas Stempfl, Gottfried Schmalz. 2008. Differential gene expression involved in oxidative stress response caused by triethylene glycol dimethacrylate. *Biomaterials* 29:10, 1377-1387. [CrossRef]
- 59. Hirofumi Fujita, Masahiko Shiosaka, Tetsuya Ogino, Yuya Okimura, Toshihiko Utsumi, Eisuke F. Sato, Reiko Akagi, Masayasu Inoue, Kozo Utsumi, Junzo Sasaki. 2008. #-Lipoic acid suppresses 6-hydroxydopamine-induced ROS generation and apoptosis through the stimulation of glutathione synthesis but not by the expression of heme oxygenase-1. *Brain Research* 1206, 1-12. [CrossRef]
- 60. Alexios S. Strimpakos, Ricky A. Sharma. 2008. Curcumin: Preventive and Therapeutic Properties in Laboratory Studies and Clinical Trials. *Antioxidants & Redox Signaling* **10**:3, 511-546. [Abstract] [Full Text PDF] [Full Text PDF] with Links]
- 61. Volker Blank. 2008. Small Maf Proteins in Mammalian Gene Control: Mere Dimerization Partners or Dynamic Transcriptional Regulators?. *Journal of Molecular Biology* **376**:4, 913-925. [CrossRef]
- 62. Dianne M. Walters, Hye-Youn Cho, Steven R. Kleeberger. 2008. Oxidative Stress and Antioxidants in the Pathogenesis of Pulmonary Fibrosis: A Potential Role for Nrf2. *Antioxidants & Redox Signaling* 10:2, 321-332. [Abstract] [Full Text PDF] [Full Text PDF with Links]
- 63. S MANANDHAR, J CHO, J KIM, T KENSLER, M KWAK. 2007. Induction of Nrf2-regulated genes by 3H-1, 2-dithiole-3-thione through the ERK signaling pathway in murine keratinocytes. *European Journal of Pharmacology* **577**:1-3, 17-27. [CrossRef]
- 64. M. L. Guzman, R. M. Rossi, S. Neelakantan, X. Li, C. A. Corbett, D. C. Hassane, M. W. Becker, J. M. Bennett, E. Sullivan, J. L. Lachowicz, A. Vaughan, C. J. Sweeney, W. Matthews, M. Carroll, J. L. Liesveld, P. A. Crooks, C. T. Jordan. 2007. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. *Blood* 110:13, 4427-4435. [CrossRef]
- 65. Eun-Joo Joung, Mei-Hua Li, Hee Geum Lee, Nuntiya Somparn, Young Suk Jung, Hye-Kyung Na, Sung-Hoon Kim, Young-Nam Cha, Young-Joon Surh. 2007. Capsaicin Induces Heme Oxygenase-1 Expression in HepG2 Cells Via Activation of PI3K-Nrf2 Signaling: NAD(P)H:Quinone Oxidoreductase as a Potential Target. *Antioxidants & Redox Signaling* 9:12, 2087-2098. [Abstract] [Full Text PDF] [Full Text PDF] with Links]
- 66. Soon Sung Lim , Ju Ryoung Kim , Hyun Ae Lim , Chan Ho Jang , Young Kyoon Kim , T. Konishi , Eun Ji Kim , Jung Han Yoon Park , Jong-Sang Kim . 2007. Induction of Detoxifying Enzyme by Sesquiterpenes Present in Inula helenium. *Journal of Medicinal Food* 10:3, 503-510. [Abstract] [Full Text PDF] [Full Text PDF with Links]
- 67. P YAO, A NUSSLER, L LIU, L HAO, F SONG, A SCHIRMEIER, N NUSSLER. 2007. Quercetin protects human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the MAPK/Nrf2 pathways#. *Journal of Hepatology* 47:2, 253-261. [CrossRef]
- 68. Young-Sam Keum, Yong-Hae Han, Celine Liew, Jung-Hwan Kim, Changjiang Xu, Xiaoling Yuan, Michael P. Shakarjian, Saeho Chong, Ah-Ng Kong. 2006. Induction of Heme Oxygenase-1 (HO-1) and NAD[P]H: Quinone Oxidoreductase 1 (NQO1) by a Phenolic Antioxidant, Butylated Hydroxyanisole (BHA) and Its Metabolite, tert-Butylhydroquinone (tBHQ) in Primary-Cultured Human and Rat Hepatocytes. *Pharmaceutical Research* 23:11, 2586-2594. [CrossRef]
- 69. Mark P. Mattson, Aiwu Cheng. 2006. Neurohormetic phytochemicals: low-dose toxins that induce adaptive neuronal stress responses. *Trends in Neurosciences* **29**:11, 632-639. [CrossRef]
- 70. Michael B Sporn. 2006. Dichotomies in cancer research: some suggestions for a new synthesis. *Nature Clinical Practice Oncology* **3**:7, 364-373. [CrossRef]
- 71. Dr. Jawed Alam . 2006. The Mammalian Cap and Collar Family of Transcription Factors. *Antioxidants & Redox Signaling* 8:1-2, 39-42. [Citation] [Full Text PDF] [Full Text PDF with Links]